
A Technique for  Improving  Performance  of  Global 
Collective  Operations  on  Cluster  of SMPs 

Benny N. Cheng 
Jet Propulsion  Laboratory 

California  Institute of Technology 
Pasadena, CA, U.S.A. 91109 

Abstract W e  describe  a  technique for speed- 
ing up  the  performance of global collective 
operations  on  a  cluster of symmetric  multi- 
processor (SMP) parallel computer. Global 
collective  operations  are  inherently faster 
within  an  SMP  computer  than between  such 
computers.  This  algorithm  takes  advantage 
of this  fact and performs the global collective 
operations  first  within  the  SMP  machine, 
and then  completes  the  operations between 
the  machines.  This  results  in significant im- 
provement  in global collective  performance 
timing,  almost  twice  as  fast  as  conventional 
MPI global reduction calls in  some  cases. 

Keywords: SMP cluster,cluster computing,parallel 
programming 

1 Introduction 

When  running  parallel  code on cluster of 
SMPs,  traditional  global collective or reduc- 
tion  operations such as global sums  and mul- 
tiply  invariably  runs  into  performance  bottle- 
necks, due  to  the simple  fact that   the connec- 
tion  mechanism  between SMP nodes are usu- 
ally order of magnitude slower than  those con- 
necting  processors  within an  SMP node. The 
standard  binary  tree  reduction  algorithms em- 
ployed by popular  communication  architecture 
such as MPI  are  certainly  not  optimal  for  an 
SMP cluster, as we will soon  see. However, 
with  some  relatively  simple  modification to  the 
global  collective algorithm,  one  can  improve 
the  performance of such  operations by a sig- 

nificant amount,  without  having to rewrite  the 
entire  code to  redistribute work among  the pro- 
cessors. 

Our  approach is rather simple and involves 
two  steps. Since  reduction  operations  within 
a node is faster,  the  algorithm  first  completes 
the  operations on all the processors  within  each 
node of the  cluster,  and  then  do a final  reduc- 
tion  among  the  number of SMPs in use. The 
main  challenge  is t o  design a spin  wait mech- 
anism  for  synchronizing  between the  two  steps 
mentioned  above. This  turns  out  not  to be too 
complicated,  and we have  seen improvements 
of up  to 50% in performance  timing using our 
algorithm. 

2 An Example: the HP X- 
Class Exemplar 

At  the  Jet Propulsion  Laboratory,  our  SMP 
cluster is an  HP X-class Exemplar  distributed 
memory  computer which actually  consist of 
16 S-class SPP2000  hypernodes,  connected by 
a coherent  toroidal  interconnect (CTI).  Each 
SMP  hypernode  contain  16  processors,  for a 
total of 256 processors.  Published numbers  for 
the  Exemplar  shows a peak  bandwidth of 3.84 
GB/s per link between SMPs,  and a bandwidth 
of 15.36 GB/s within the  SMP itself, about 4 
times  the  speed  difference[l]. The  operating 
system  runs on HPUX 10.01,  with HP's im- 
plementation of MPI version 1.4. Timing per- 
formance  comparison  for a global sum  opera- 
tion using the  MPIallreduce call and  our new 



new gsum 

200 l- ”-4  4 

0 
0 16 32 48 64 80 96 112 128 144 b 

nPEs Time 

Figure 1: MPI  vs new global sum performance  Figure 2: Block diagram of new gsum  code 

global sum  code  are  shown in figure 1. 
The figure  indicates that  a substantial im- 

provement in global sum performance  can be 
obtained beyond the confines of a hypernode. 
When  running  our  ocean modeling  code on  this 
machine, the two-dimensional conjugate  gradi- 
ent solver mirrors  the  performance of the above 
global  sums, hence  benefits  from the new global 
sum  code  with  increasing  number of processors. 

3 The Algorithm 

We illustrate  our  technique  with  the global 
sum  operation,  though in practice,  the algo- 
rithm works  for any  global collective operation. 
For  each SMP node, a region of (near)  shared- 
memory is reserved, and declared to be acces- 
sible by any  other  node as far-shared  memory. 
We implement  this  procedure using map, al- 
though  there  are  several  ways  to  do  this, such 
as using shmget. The global sum is then com- 
puted as follows. Within  each  SMP  node, we 
designate a randomly chosen CPU as the  SMP 
master, which computes  the  sum over all ele- 
ments  within  the  node itself and  stores  it in 
it’s local memory region. For the whole clus- 
ter,  another  CPU,  randomly chosen  from one 
of the  SMP  master  CPUs, is designated as the 

cluster  master.  The  cluster  master  spin-wait 
for  all the  SMP  masters  to  complete  their op- 
erations by polling their local shared-memory 
regions. When it detects  that  the  SMP mas- 
ters have  computed  their local sums, it then 
adds  up  the  results of the  SMP  masters with 
itself, which now contains  the  global  sum. In 
the  meantime, all SMP  masters spin-wait on 
the  cluster  master,  and when the  cluster mas- 
ter  completes,  the value of the global sum is 
then copied t o  each  SMP’s local  memory. This 
is detected by all the  other  CPUs which copy 
the global sum from  their  respective  SMP mas- 
ter. A block diagram of how the  above proce- 
dure works is shown in figure 2. 

4 Conclusion 

Due t o  its cost  and simplicity, clustering  SMP 
computers is becoming a major design among 
supercomputer  makers such as the HP Exem- 
plar,  and  SGI Origin 2000. These  SMP  clusters 
can  handle  computation that run in parallel 
over hundreds, even thousands of processors. 
An inherent  weakness that comes  with the clus- 
ter design  is that   the communication  architec- 
ture between the  SMP  computers  are simply 
not as fast as those  within the  SMP  computers. 



Very often,  they  are  simply high speed  network 
interconnects,  rather  than  the  faster  system 
buses that connect  processors  inside the  SMP 
computer.  This  architecture  naturally  leads  to 
performance  bottlenecks  for  parallel  codes that 
communicates  with  more  than  the  number of 
processors in a single SMP  computer.  Stan- 
dard message  passing  communication  architec- 
ture such as MPI  do  not take into  account  the 
cluster  design when  performing  global collec- 
tive  operations,  for  the  simple reason of main- 
taining  portability. However, we show that 
with a simple  modification of the global col- 
lective operation  algorithm,  the  performance 
of such  operations  on  clusters  can  be improved 
significantly. It  is definitely worth  your while 
t o  implement  such an  algorithm when  encoun- 
tering  time-critical  projects  that  spend  most of 
its time  doing  global collective operations. 

Acknowledgement 

This work is performed at the  Jet Propulsion 
Laboratory,  California  Institute of Technology, 
under  contract  with  the  National  Aeronautics 
and  Space  Administration. Reference  herein 
to  any specific commercial  product, process, 
or service by trade  name,  trademark,  manu- 
facturer, or otherwise,  does  not  constitute or 
imply its endorsement by the United States 
Government or the  Jet Propulsion  Laboratory, 
California Institute of Technology. 

References 

[l] Hewlett  Packard  Technical  Report  on High 
Performance  Computing  System, 1996. 


